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Abstract. We present three different asymptotic studies of the second Pairdguation

y” = 2y% + xy + « involving x| — oo, |a| — oo or unbounded initial data. We show
how the direct method, which is in the spirit of Boutroux, can be naturally applied to each of
the three cases.

1. Introduction

The six Painleé equations are well known nonlinear second-order ordinary differential
equations (ODESs) in the complex plane. These equations exhibit the Faipteperty
which states that the only possible movable singularities in their solutions are poles. They
were identified by Painlév[23], Gambier [10] and Fuchs [9] as the only second-order ODEs
(with degree one) with the Painléproperty whose generic solutions are new transcendental
functions.

The Painlee property is strongly linked to complete integrability (in the sense of
solvability through an associated single-valued linear system). Abloatitd [1, 2] have
shown extensive evidence that ODE reductions of completely integrable partial differential
equations necessarily have the Paiglg@voperty.

The Painle@ transcendents play a distinguished role as nonlinear special functions. In
particular, they can be written in terms of entire functions [22], they are isomonodromy
conditions for associated linear ODEs [9] and their connection problem can be solved
directly [17].

The historical development of the classical special functions [21] is interwoven with
their asymptotic analysis. Indeed, asymptotics provides a deeper understanding of such
functions. This is also true of the Painketranscendents. In particular, asymptotic analysis
provides the only known explicit description of these transcendents in terms of known
classical functions.

The asymptotic description of the Paingevequations in the limit as their
independent variable tends to a fixed singularity, such as infinity, has been well studied
[5,6,3,24,16,7,17,14]. An important problem here is to relate the solution near a fixed
singularity to its behaviour near another (or the same) such singularity. The case when a
parameterof the equations approaches infinity has only recently been studied [19, 15]. The
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double asymptotic limit when the independent variable and a parameter approaches infinity
is given in [20]. The results in [20, 19] are restricted to formal special solutions.

Of the various different methodologies used to determine the asymptotic behaviour of
the Painle@ transcendents, the most natural appears to be that of Boutroux [5, 6] and of
Joshi and Kruskal [17,18, 15]. We use their direct method here to study the second &ainlev
equation, PIl, given by

Y'=2y+xy+a. @
This equation is encountered in several physical applications such as a spherical electric
probe in continuum plasma [8],@@tler vortices in boundary layers [12, 13, 4] and nonlinear
optics [11]. In section 2, we describe Boutroux’s result for unboundédnd announce
Joshi’s result for unboundejd|. In section 3, we give details of a new result in the case
of unbounded initial data. Our result also applies to those physical applications where large
but finite data may be given. Another reason for studying such a limit lies in the fact that
the solution space of a nonlinear ODE cannot be completely described without studying the
limits of known behaviours. Unbounded initial data provides one such limit. In all three
cases, the generic solution is given by elliptic functions to leading order.

2. Direct asymptotic method for PII

The direct asymptotic method involves the following steps:

(1) transform equation according to dominant balance;

(2) integrate dominant terms;

(3) establish generic conditions;

(4) estimate error of leading-order approximate solution.

Let the new transformed variables lbg u) after step 1. The Painlévequations are
second-order ODESs, so one has a unique solutign for any given bounded initial data
(not corresponding to singular values of the equation):

(z,u,uz) = (20,1, 7). (2)
The leading-order approximation of Pll can then be shown to be given in terms of elliptic
functions defined implicitly by
dv
rV/P@)
where P is some quartic polynomial with rootg, i = 1, 2, 3,4, andT is any path in the
u-plane fromp to u (avoidingd;). These elliptic functions possess two periods given by

z2—20 ®3)

dv
;= 4
@ 72 JP®) @
whereC; are linearly independent closed contours enclosing two roo®®(ej. Figure 1
illustrates the described quantities. See [15] for further properties of elliptic integrals.
The generic conditions usually involve upper bounds on:
e length of T';
o u(z)l,
and lower bounds on:
e distance betweei and the roots ofP;
e distance between roots df.
We call such conditions generic since in the appropriate asymptotic limit, these lower
or upper bounds can be made, respectively, as small or as large as one requires. For the
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Figure 1. Integration curves i-plane for PII.

sake of clarity, we do not explicitly state what the generic assumptions are in the following
illustrative examples. For this and the proof of the results, the reader is referred to the
relevant references. However, complete details for our new result is provided in section 3.

Example 2.1We first illustrate the direct method by describing Boutroux’s asymptotic
estimate [5, 6] for PIl in the limifx| — oo. In step 1, the dominant balance argument
[17] for this case leads to a change of variables

y(x) = Vxu(z) 7= 3x%?
which transforms PII to

u,,=2u3+u+} Q—uz-i—i .
z\ 3 9z

The dominant terms are.. and 23 + u. In step 2 we integrate these dominant terms to
obtain

u?=Pu)+S
where
4 2 “u, (20 u
Pw)=u"+u“+2E S=21 == —-u,+-—)dz
0 % 3 9z

and E depends on the initial data (2), kept fixed in the analysisz gsts large S becomes
small and the leading-order solution in step 3 is a (Jacobian) elliptic function given by
(3) with P given above. Under certain generic conditions [5, 6] which invahe> 1/¢,

€ > 0, the required error estimate between this leading-order solution and the true solution
is given by the following theorem.

Theorem 2.2Under generic conditiond &, €g > 0 s.t. for O< € < ¢y, we have

¥ dv
‘/ P G| ke

Moreover, ifzo andz; are two successive points whare= 5, then forj =1 or 2,
(z0 — 21) — )| < ky/€
wherew; are the two periods given by (4).
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Example 2.3In this example, we announce Joshi’'s [15] asymptotic estimate for PII in the
limit @] — oo. In step 1, the dominant balance argument for this case leads to a change
of variables

1/3)6 € = 0{71

y(x) = e Y3u(2) z=€"
which transforms PII to
Uy, = 2u + 1+ ezu.

The dominant terms are.. and 2° + 1. In step 2 we integrate these dominant terms to
obtain

u? = Pu)+eS

where
Zz
P(u) = u*+2u+2E S=2/ zuu, dz
20

and E depends on the initial data, kept fixed in the analysis. For Bhithe leading-order
solution in step 3 is a (Jacobian) elliptic function given by (3). Under certain generic
conditions [15], the required error estimate between this leading-order solution and the true
solution is as follows.

Theorem 2.4Under generic conditiond ¢y > 0 s.t. for O< € < ¢, we have

“ dv
———— —(z — 20)| < V2¢¥?|loge].
‘/n VP ()
Moreover, ifzo andz; are two successive points wheare= 5, then forj =1 or 2,
(zo — 21) — ;| < v2€"?|loge]|

wherew; are the two periods given by (4).

3. Unbounded initial data for PlII

Consider the second Painkequation, PIl, given by (1), when the parametés fixed and
the given initial conditions aréx, y, y') = (xo, yo, y5). Multiply (1) by y" and integrate to
obtain

y’2=y4+2ay+2/ xyy' dx + E (5)

Xo

where
E = (5p)* = 5 — 2ay0.
By large initial data, we mean larg&|. Hence rescale according to
y =€ Y3u(z) z=e13% e = E%4
Then (5) becomes
u? = Pu)+eS (6)

where

Z
Pw) =u*+1 S:Zocu—l-Z/ zuu, dz. (7

<0
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Figure 2. Integration curve in thé/-domain for PII.

The transformed initial conditions are
(2. u,u) = (20,1, 1) = (¢ Y3x0, €3y0, €2/3y)). (8)

Our aim is to show that the solutions of (5) in the case of smathn be approximated
by the (Jacobi) elliptic functions given implicitly by (3) with two periods (4), whétas
given by (7). The roots oP are

d, = (=4 k=123, 4.
In particular, note that the distance between any two roots satisfies

i —djl > V2 i# ] )
Definition 3.1.The following are calledyeneric conditions

(D) 0<e< 1—16, la| < |logel.

(2) (U-domain)|u| < |loge| ande'? < |u —dy|, k = 1,2, 3, 4.

(3) (Z-domain)|z| < |loge|.

(4) Initial conditions (8) such thato, n) € Z x U.

(5) T is any path inU, from 5 to w, such that its lengthl"| < |loge]|.

Figure 2 depicts thé&/-domain.

Definition 3.2.Suppose: and the initial conditions (8) are given which satisfy the generic
conditions. Then the unique solution of (6) satisfying these initial conditions is called a
generic solutionof PII.

Theorem 3.3Under generic conditions] 0 < ¢g < %6 s.t. for 0< € < ¢g, we have

—(z — 20)| < 3v2¢Y4| loge . (10)

/ dv
r «/P)

Moreover, the distance between any two successive pgirasdz; whereu = n satisfies

I(zo — z1) — ;| < 3v2¢Y4|loge|* ji=12 (11)
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Note that ass — 0, the upper bounds in this theorem also tend to zero. In particular,
for all 0 < e < 10789, these upper bounds are less tha/8. We emphasize that, within
the constraints of the generic conditions, the above estimate is independent of the choice of
pathT.

Proof.

I—/u v —(z = z0)
= i P(v) Z 20
/‘”( v, _1> dv
n v P(v) sz

:/n“</1+f_1)‘:j. 12)

Here we have used the square root of (6), fixing the branch of the square root function to
have values in the right half complex plane. That is,

S
Re‘/1+% > 0. (13)

What remains is to determine estimates for the various expressions in the integrand of (12).
We do this through the following lemmas. O

Lemma 3.4Under the generic assumptions
|P(u)| > Y2, (14)

Proof. In the U-domain, inflP(1)| occurs where: is closest to one of the roots &f(u),
i.e. |u — di| = €%? for somek = 1, 2, 3, 4. Also, since the minimum distance between any
two roots of| P(u)| is given by (9), we arrive at

|[P()| > €22 — Y23

> 61/2.
We have also used the fact thak 7. O
Lemma 3.5Under the generic assumptions
S
| < 3¢12|loge)®. (15)

Proof. The generic assumptions and (7) lead to

Z
/ zuu, dz
20

/ zvdv
n
< 3llogel®.

This together with (14) lead to the desired result (15). (]

IS| < |20u| + 2

< 2|logel® +2

Lemma 3.6Under the generic assumptions

€S
J1+— -1
+P

< 3¢2|loge|®. (16)
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Proof. Let
0=.1+ % +1 (17)
then the left-hand side of (16) is just
€S
—2l=|—|.
10 —2| PO

The desired result is obtained from the upper bound|é8y P|, given by (15), and the
lower bound|Q| > 1 which follows from the previously chosen branch (13) of the square
root in (17). O

Lemma 3.7Under the generic assumptions, there exists Gy < 1—16 such that for all
0 < € < ¢p,
1/4
|uz| > .

V2
Proof. From (6), we have
u?] > | P|(1— |eS/P)).
Using (14) and (15), we have
u?| > €2(1 - 3¢'?|loge]?).

It is easy to show that there exists<Oeg < 15 such that 8/2|loge|® < ; and the lemma
is proved. O

Finally, we can complete the proof of the theorem. By lemmas 3.6 and 3.7 and (12),
we have
32| logel|®
61/4/\/2
< 3V2eY4 loge|®.
This proves (10). Estimate (11), for the distance between two successive poiatsl

z1 whereu = n, is given by a similar argument, whefeis chosen to be a closed curve
enclosing two rootg; of P(u), and by using (4). O

] < |loge|
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