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Abstract. We present three different asymptotic studies of the second Painlevé equation
y ′′ = 2y3 + xy + α involving |x| → ∞, |α| → ∞ or unbounded initial data. We show
how the direct method, which is in the spirit of Boutroux, can be naturally applied to each of
the three cases.

1. Introduction

The six Painlev́e equations are well known nonlinear second-order ordinary differential
equations (ODEs) in the complex plane. These equations exhibit the Painlevé property
which states that the only possible movable singularities in their solutions are poles. They
were identified by Painlev́e [23], Gambier [10] and Fuchs [9] as the only second-order ODEs
(with degree one) with the Painlevé property whose generic solutions are new transcendental
functions.

The Painlev́e property is strongly linked to complete integrability (in the sense of
solvability through an associated single-valued linear system). Ablowitzet al [1, 2] have
shown extensive evidence that ODE reductions of completely integrable partial differential
equations necessarily have the Painlevé property.

The Painlev́e transcendents play a distinguished role as nonlinear special functions. In
particular, they can be written in terms of entire functions [22], they are isomonodromy
conditions for associated linear ODEs [9] and their connection problem can be solved
directly [17].

The historical development of the classical special functions [21] is interwoven with
their asymptotic analysis. Indeed, asymptotics provides a deeper understanding of such
functions. This is also true of the Painlevé transcendents. In particular, asymptotic analysis
provides the only known explicit description of these transcendents in terms of known
classical functions.

The asymptotic description of the Painlevé equations in the limit as their
independent variable tends to a fixed singularity, such as infinity, has been well studied
[5, 6, 3, 24, 16, 7, 17, 14]. An important problem here is to relate the solution near a fixed
singularity to its behaviour near another (or the same) such singularity. The case when a
parameterof the equations approaches infinity has only recently been studied [19, 15]. The
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double asymptotic limit when the independent variable and a parameter approaches infinity
is given in [20]. The results in [20, 19] are restricted to formal special solutions.

Of the various different methodologies used to determine the asymptotic behaviour of
the Painlev́e transcendents, the most natural appears to be that of Boutroux [5, 6] and of
Joshi and Kruskal [17, 18, 15]. We use their direct method here to study the second Painlevé
equation, PII, given by

y ′′ = 2y3+ xy + α. (1)

This equation is encountered in several physical applications such as a spherical electric
probe in continuum plasma [8], G̈ortler vortices in boundary layers [12, 13, 4] and nonlinear
optics [11]. In section 2, we describe Boutroux’s result for unbounded|x| and announce
Joshi’s result for unbounded|α|. In section 3, we give details of a new result in the case
of unbounded initial data. Our result also applies to those physical applications where large
but finite data may be given. Another reason for studying such a limit lies in the fact that
the solution space of a nonlinear ODE cannot be completely described without studying the
limits of known behaviours. Unbounded initial data provides one such limit. In all three
cases, the generic solution is given by elliptic functions to leading order.

2. Direct asymptotic method for PII

The direct asymptotic method involves the following steps:
(1) transform equation according to dominant balance;
(2) integrate dominant terms;
(3) establish generic conditions;
(4) estimate error of leading-order approximate solution.
Let the new transformed variables be(z, u) after step 1. The Painlevé equations are

second-order ODEs, so one has a unique solutionu(z) for any given bounded initial data
(not corresponding to singular values of the equation):

(z, u, uz) = (z0, η, η
′). (2)

The leading-order approximation of PII can then be shown to be given in terms of elliptic
functions defined implicitly by∫

0

dv√
P(v)

= z − z0 (3)

whereP is some quartic polynomial with rootsdi , i = 1, 2, 3, 4, and0 is any path in the
u-plane fromη to u (avoidingdi). These elliptic functions possess two periods given by

ωj =
∮
Cj

dv√
P(v)

(4)

whereCj are linearly independent closed contours enclosing two roots ofP(u). Figure 1
illustrates the described quantities. See [15] for further properties of elliptic integrals.

The generic conditions usually involve upper bounds on:
• length of0;
• |u(z)|,

and lower bounds on:
• distance between0 and the roots ofP ;
• distance between roots ofP .
We call such conditions generic since in the appropriate asymptotic limit, these lower

or upper bounds can be made, respectively, as small or as large as one requires. For the
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Figure 1. Integration curves inu-plane for PII.

sake of clarity, we do not explicitly state what the generic assumptions are in the following
illustrative examples. For this and the proof of the results, the reader is referred to the
relevant references. However, complete details for our new result is provided in section 3.

Example 2.1.We first illustrate the direct method by describing Boutroux’s asymptotic
estimate [5, 6] for PII in the limit|x| → ∞. In step 1, the dominant balance argument
[17] for this case leads to a change of variables

y(x) = √xu(z) z = 2
3x

3/2

which transforms PII to

uzz = 2u3+ u+ 1

z

(
2α

3
− uz + u

9z

)
.

The dominant terms areuzz and 2u3 + u. In step 2 we integrate these dominant terms to
obtain

u2
z = P(u)+ S

where

P(u) = u4+ u2+ 2E S = 2
∫ z

z0

uz

z

(
2α

3
− uz + u

9z

)
dz

andE depends on the initial data (2), kept fixed in the analysis. Asz gets large,S becomes
small and the leading-order solution in step 3 is a (Jacobian) elliptic function given by
(3) with P given above. Under certain generic conditions [5, 6] which involve|z| > 1/ε,
ε > 0, the required error estimate between this leading-order solution and the true solution
is given by the following theorem.

Theorem 2.2.Under generic conditions,∃ k, ε0 > 0 s.t. for 0< ε < ε0, we have∣∣∣∣ ∫ u

η

dv√
P(v)

− (z − z0)

∣∣∣∣ < k
√
ε.

Moreover, if z0 andz1 are two successive points whereu = η, then forj = 1 or 2,

|(z0− z1)− ωj | < k
√
ε

whereωj are the two periods given by (4).
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Example 2.3.In this example, we announce Joshi’s [15] asymptotic estimate for PII in the
limit |α| → ∞. In step 1, the dominant balance argument for this case leads to a change
of variables

y(x) = ε−1/3u(z) z = ε−1/3x ε = α−1

which transforms PII to

uzz = 2u3+ 1+ εzu.
The dominant terms areuzz and 2u3 + 1. In step 2 we integrate these dominant terms to
obtain

u2
z = P(u)+ εS

where

P(u) = u4+ 2u+ 2E S = 2
∫ z

z0

zuuz dz

andE depends on the initial data, kept fixed in the analysis. For thisP , the leading-order
solution in step 3 is a (Jacobian) elliptic function given by (3). Under certain generic
conditions [15], the required error estimate between this leading-order solution and the true
solution is as follows.

Theorem 2.4.Under generic conditions,∃ ε0 > 0 s.t. for 0< ε < ε0, we have∣∣∣∣ ∫ u

η

dv√
P(v)

− (z − z0)

∣∣∣∣ < √2ε1/2| logε|.

Moreover, if z0 andz1 are two successive points whereu = η, then forj = 1 or 2,

|(z0− z1)− ωj | <
√

2ε1/2| logε|
whereωj are the two periods given by (4).

3. Unbounded initial data for PII

Consider the second Painlevé equation, PII, given by (1), when the parameterα is fixed and
the given initial conditions are(x, y, y ′) = (x0, y0, y

′
0). Multiply (1) by y ′ and integrate to

obtain

y ′2 = y4+ 2αy + 2
∫ x

x0

xyy ′ dx + E (5)

where

E = (y ′0)2− y4
0 − 2αy0.

By large initial data, we mean large|E|. Hence rescale according to

y = ε−1/3u(z) z = ε−1/3x ε = E−3/4.

Then (5) becomes

u2
z = P(u)+ εS (6)

where

P(u) = u4+ 1 S = 2αu+ 2
∫ z

z0

zuuz dz. (7)
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Figure 2. Integration curve in theU -domain for PII.

The transformed initial conditions are

(z, u, uz) = (z0, η, η
′) = (ε−1/3x0, ε

1/3y0, ε
2/3y ′0). (8)

Our aim is to show that the solutions of (5) in the case of smallε can be approximated
by the (Jacobi) elliptic functions given implicitly by (3) with two periods (4), whereP is
given by (7). The roots ofP are

dk = (−1)1/4 k = 1, 2, 3, 4.

In particular, note that the distance between any two roots satisfies

|di − dj | >
√

2 i 6= j. (9)

Definition 3.1.The following are calledgeneric conditions.
(1) 0< ε < 1

16, |α| < | logε|.
(2) (U -domain)|u| < | logε| andε1/2 < |u− dk|, k = 1, 2, 3, 4.
(3) (Z-domain)|z| < | logε|.
(4) Initial conditions (8) such that(z0, η) ∈ Z × U .
(5) 0 is any path inU , from η to w, such that its length|0| < | logε|.

Figure 2 depicts theU -domain.

Definition 3.2.Supposeε and the initial conditions (8) are given which satisfy the generic
conditions. Then the unique solution of (6) satisfying these initial conditions is called a
generic solutionof PII.

Theorem 3.3.Under generic conditions,∃ 0< ε0 <
1
16 s.t. for 0< ε < ε0, we have∣∣∣∣ ∫

0

dv√
P(v)

− (z − z0)

∣∣∣∣ < 3
√

2ε1/4| logε|4. (10)

Moreover, the distance between any two successive pointsz0 andz1 whereu = η satisfies

|(z0− z1)− ωj | < 3
√

2ε1/4| logε|4 j = 1, 2. (11)
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Note that asε → 0, the upper bounds in this theorem also tend to zero. In particular,
for all 0 < ε < 10−80, these upper bounds are less than1

2ε
1/8. We emphasize that, within

the constraints of the generic conditions, the above estimate is independent of the choice of
path0.

Proof.

I =
∫ u

η

dv√
P(v)

− (z − z0)

=
∫ u

η

(
vz√
P(v)

− 1

)
dv

vz

=
∫ u

η

(√
1+ εS

P
− 1

)
dv

vz
. (12)

Here we have used the square root of (6), fixing the branch of the square root function to
have values in the right half complex plane. That is,

Re

√
1+ εS

P
> 0. (13)

What remains is to determine estimates for the various expressions in the integrand of (12).
We do this through the following lemmas. �
Lemma 3.4.Under the generic assumptions

|P(u)| > ε1/2. (14)

Proof. In theU -domain, inf|P(u)| occurs whereu is closest to one of the roots ofP(u),
i.e. |u− dk| = ε1/2 for somek = 1, 2, 3, 4. Also, since the minimum distance between any
two roots of|P(u)| is given by (9), we arrive at

|P(u)| > ε1/2|
√

2− ε1/2|3
> ε1/2.

We have also used the fact thatε < 1
16. �

Lemma 3.5.Under the generic assumptions∣∣∣∣εSP
∣∣∣∣ < 3ε1/2| logε|3. (15)

Proof. The generic assumptions and (7) lead to

|S| < |2αu| + 2

∣∣∣∣ ∫ z

z0

zuuz dz

∣∣∣∣
< 2| logε|2+ 2

∣∣∣∣ ∫ u

η

zv dv

∣∣∣∣
< 3| logε|3.

This together with (14) lead to the desired result (15). �
Lemma 3.6.Under the generic assumptions∣∣∣∣∣

√
1+ εS

P
− 1

∣∣∣∣∣ < 3ε1/2| logε|3. (16)
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Proof. Let

Q =
√

1+ εS
P
+ 1 (17)

then the left-hand side of (16) is just

|Q− 2| =
∣∣∣∣ εSPQ

∣∣∣∣ .
The desired result is obtained from the upper bound for|εS/P |, given by (15), and the
lower bound|Q| > 1 which follows from the previously chosen branch (13) of the square
root in (17). �
Lemma 3.7.Under the generic assumptions, there exists 0< ε0 <

1
16 such that for all

0< ε < ε0,

|uz| > ε1/4

√
2
.

Proof. From (6), we have

|u2
z | > |P |(1− |εS/P |).

Using (14) and (15), we have

|u2
z | > ε1/2(1− 3ε1/2| logε|3).

It is easy to show that there exists 0< ε0 <
1
16 such that 3ε1/2| logε|3 < 1

2 and the lemma
is proved. �

Finally, we can complete the proof of the theorem. By lemmas 3.6 and 3.7 and (12),
we have

|I | < 3ε1/2| logε|3
ε1/4/
√

2
| logε|

< 3
√

2ε1/4| logε|4.
This proves (10). Estimate (11), for the distance between two successive pointsz0 and
z1 whereu = η, is given by a similar argument, where0 is chosen to be a closed curve
enclosing two rootsdk of P(u), and by using (4). �
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